Reduction of Nitric Oxide with Carbon Monoxide and Hydrogen over Ruthenium Catalysts

R. J. H. VOORHOEVE AND L. E. TRIMBLE

Bell Laboratories, Murray Hill, New Jersey 07974

Received October 3, 1974

Ruthenium on alumina catalysts show five reproducible states with characteristic conversion patterns in the reduction of NO with a mixture of CO and H₂ in the presence of H₂O and CO₂. The Ru/Al₂O₃ catalysts are compared with bulk Ru. Two peaks in the NH₃ yield are distinguished; a CO-assisted NH₃ maximum at $\sim 270^{\circ}$ C and a H₂-assisted NH₃ maximum at $\sim 350^{\circ}$ C. The low-temperature NH₃ maximum increases with decreasing particle size of the Ru. The dual nature of Ru catalysts is proposed to be due to heavy coverage of the Ru surface with nitrogen in the reduced state and to partial coverage with oxygen in the oxidized state. NH₃ is not a gas-phase intermediate in the N₂ formation, but N₂O is. The watergas shift reaction has only a minimal effect on the selectivity, except at low temperature where the shift decreases the CO-assisted NH₃ yield. Oxidized Ru is active in the formation of CH₄ from CO and H₂.

INTRODUCTION

Metallic ruthenium is of considerable interest as catalyst for the conversion of the oxides of nitrogen present in automotive exhaust (1,2). It is favored because in comparison with other noble metal catalysts (2) or transition metal oxides (1), it is more selective towards the formation of N₂ rather than NH₃. Ruthenium is commonly used supported on alumina or silica-alumina (1-3). Ruthenium which is ionically bound in ruthenates (4-6) or in diluted form in perovskite-like manganites (5) is also an active and selective catalyst for NO reduction. Under reducing conditions of the tests, metallic ruthenium may precipitate on the surface of the ruthenates (5,6) and to a lesser extent, on the manganites (5). In our previous study of these catalysts, it was found that metallic ruthenium shows quite complex catalytic behavior. Earlier workers have noted the "dual state" behavior produced by alternatively oxidizing or reducing the catalyst (1,3,7). The reduced state of the dual nature Ru (RDN-Ru) is characterized by low activity in the watergas shift reaction and relatively high NH₃ yields (~20%) at $T \ge 450^{\circ}$ C. The oxidized state of the dual nature Ru (ODN-Ru) shows high activity in the shift reaction and yields only minimal NH₃ at $T \ge 450^{\circ}$ C.

The purpose of the present study is to find how the role of the Ru catalyst in the NO reduction is linked to its preparation and pretreatment. The reduction of NO in a mixture of NO, CO, H₂, H₂O and CO₂ in He is used to characterize Ru catalysts in their various reproducible states produced by different pretreatments. The products of the catalytic conversion are N₂, N₂O, NH₃, H₂, CO₂ and CH₄.

With little variation, the partial reactions which can explain the conversion process over oxidic ruthenium catalysts (5) can be invoked here too. NO, CO, and H₂ all adsorb strongly on ruthenium, in particular when its surface is reduced (8-13). NO and CO can be adsorbed in a molecular state, with the ir spectra indicating binding comparable to that in the nitrosyls and carbonyls (9,11,13).

$$NO + Ru \rightarrow Ru - NO$$
, (1)

$$CO + Ru \rightarrow Ru-CO.$$
 (2)

The two molecules probably compete for the same sites (2,14). In addition, dissociative adsorption of NO is possible, as indicated by the adsorption and isotopic exchange of N₂ on Ru (15,16).

$$NO \rightarrow N_{ads} + O_{ads}$$
. (3)

Interaction of NO or N_{ads} with H_2 leads to N-containing fragments at the surface which are likely to be NH_2 or NH (17). Formation of N_2 and N_2O may then occur via:

$$2N_{ads} \rightarrow N_2, \qquad (4)$$

$$\mathrm{NH}_{2_{\mathrm{ads}}} + \mathrm{NO}_{\mathrm{ads}} \rightarrow \mathrm{N}_2 + \mathrm{H}_2\mathrm{O}, \quad (5)$$

$$N_{ads} + NO_{ads} \rightarrow N_2O.$$
 (6)

The formation of NH₃ by hydrogenation of N_{ads} or NH_{2_{ads} appears to prevail at temperatures above 350°C, in accordance with the positive effect of the H₂ partial pressure on the rate of NH₃ formation (3).}

$$2\mathrm{NH}_{2_{\mathrm{ads}}} + \mathrm{H}_2 \to 2\mathrm{NH}_3. \tag{7}$$

However, at low temperatures, the production of NH_3 is strongly enhanced by CO, in the presence of either H_2 (3,14) or particularly, H_2O (14). This has been explained by the presence of an isocyanate intermediate (13).

$$e + N_{ads} + CO_{ads} \rightarrow NCO^{-}$$
 (8)

$$\mathrm{NCO}^{-} + 2\mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{CO}_{2} + \mathrm{NH}_{3} + \mathrm{OH}^{-}$$
(9)

This is also in accordance with the cocatalytic effect of NO on the watergas shift reaction (3):

$$CO + H_2O \rightarrow CO_2 + H_2.$$
(10)

However, adsorption of CO on NO-sites, thus reducing the surface concentration of N is also a possible explanation (2), as is the enhanced adsorption of H_2 in the presence of CO (8,18). It should be pointed out here, that the occurrence of the watergas shift reaction may either increase or decrease the NH₃ formation, since both CO and H₂ partial pressures have a positive effect on NH₃ formation.

In the NO reduction, H_2 and CO compete. The NO-CO reaction is faster at low temperature, the H_2 -NO reaction is faster at higher temperature (3).

At high temperature, decomposition of NH_3 or $NH_{2 \text{ ads}}$ is expected to become important in ensuring a selective conversion of NO to N_2 (1,17).

EXPERIMENTAL METHODS

The catalysts used were bulk ruthenium metal (Englehard Industries, Newark, NJ) with a BET surface area of 0.4 m²/g and variously treated samples of Ru on alumina (Table 1). Fisher activated alumina pellets were impregnated with a solution of RuCl₃ (K & K Laboratories) slowly heated to 300° C in flowing H₂ and reduced at 300°C for 8 hr. The catalyst pellets were then crushed and the fraction of 37-250 μm (80-400 mesh) used. This stock was shown by chemical analysis and X-ray diffraction to consist of 0.8% Ru on γ -AlOOH, the surface area was $237 \text{ m}^2/\text{g}$. The Ru lines in X-ray diffraction were extremely broad and weak. The Ru/γ -Al₂O₃ catalysts used were obtained from this material by heating at 500-600°C for various lengths of time in H_2 or in a dilute H_2 -NO-CO- H_2 O-CO₂-He mixture (Table 1).

The catalytic properties of the catalysts were measured with a fixed-bed continuous flow reactor in which 0.3-1 cm³ catalyst supported on a porous quartz disc was subjected to a downflow of a preheated mixture of 0.13% NO, 0.4% H₂, 1.3% CO, 3% H₂O and 3% CO₂ in Hc (mixture W) at GHSV 18,000 hr⁻¹. This composition was chosen to approximate the concentrations in automotive exhaust.

No.	X-Ray diffraction and chemical analysis	Preparation	Surface area (m ²/g)	
I	Ru bulk metal 1.00 g mixed with 0.50 quartz powder	Ru from Engelhard, as received	0.4 <i>ª</i>	
IA	Same as I	I, 4 hr H ₂ at 600 °C, cooled in H ₂	0.4	
IB	Same as I	IA, 16 hr mixture W at 600°C, cooled in mixture W	0.4	
IC II	Same as I 0.8% Ru/y-AlOOH	IB, 17 hr H ₂ at 625°C, cooled in H ₂ Fisher activated alumina impregn. with	0.4	
	$d_{\rm Ru}$ < 100 Å	RuCl ₃ ; H ₂ reduction at 300°C, 8 hr, cooled in H ₂ , exposed to air, pellets crushed to $37-250 \ \mu m$	235	
IIIA	$\begin{array}{l} 0.8\% \mathrm{Ru}/\gamma - \mathrm{Al}_2\mathrm{O}_3\\ d_{\mathrm{Bu}} < 100 \mathrm{\AA} \end{array}$	II heated in mix W, 1.5 hr at 520°C		
IIIB	Same as IIIA	IIIA heated in mix W, 11 hr at 627°C	145 ^b	
IV	$\begin{array}{l} 0.8\% \mathrm{Ru}/\gamma - \mathrm{Al_2O_3} \\ d_{\mathrm{Bu}} < 100 \mathrm{\AA} \end{array}$	II heated in H_2 , 4 hr at 600°C, cooled in H_2 , exposed to air	238	
IVA	Same as IV $d_{\rm Ru} < 100$ Å	IV heated in mix W, 15 hr at 620°C	157 ^{<i>b</i>}	
IVB	Same as IV d_{Ru} not measured	IV heated in mix W for several days, in situ reduced in H_2 , 3 hr at 500°C, cooled in H_2		
IVC	Same as IV d_{Ru} not measured	IVB heated in mix W, 16 hr at 600°C		
IVD	Same as IV $d_{\rm Ru} \gtrsim 500$ Å	IVC heated in mix W +1.7% O_2 , 10 min at 540°C	1386	

 TABLE 1

 Preparation and Properties of Ru Catalysts

^a Surface area of Ru powder only. Surface areas measured before use unless otherwise indicated.

^b Measured after use.

The composition of the feed and of the effluent from the reactor were determined by analyzing dried samples by gas chromatography over Porapack Q and molecular sieve 13X columns used in series (19). The contents of H₂, N₂, NO, CO, N₂O and CH₄ were determined, and the NH₃ yield was calculated from the nitrogen balance. This analysis for NH₃ was confirmed by determination of the NH₃ content in the effluent by absorption and chemical analysis. An example of a gc analysis is given in Fig. 1. Occasionally, gas samples are analyzed by mass spectrometry to check the analysis procedure. The conversion of the inlet mixture was determined as a function of catalyst temperature at slowly ascending or descending temperature. The catalyst temperature was programmed (Bruce Controller and SRI programmer), up or down a terrace-pattern with a ramp of 2.5°C/min and a section of 5 min at constant temperature, at the end of which period the effluent sample was taken with an automatic sample valve.

RESULTS AND DISCUSSION

Bulk Ruthenium Metal

The conversion of NO, CO and H₂ as a function of temperature is given in Fig. 2. The top panel gives the yield of NO, N₂O and N₂ expressed as a percentage of the inlet NO, the middle panel does the same for NH₃, and the bottom panel gives the yield of H₂ and CO as a percentage of the inlet H₂ and inlet CO, respectively. The broken curves give the state of the asreceived catalyst, and these surface characteristics are lost after the first heating to $T \ge 450^{\circ}$ C. In Fig. 3, the conversion of CO to CH₄ is expressed as ppm CH₄ in

FIG. 1. Example of gc analysis. Peaks pointing down come from the Porapack Q column, peaks pointing up from the molecular sieve column. (1) Injection disturbance; (2) H₂; (3) combined CO, O₂, N₂, NO; (4) O₂; (5) N₂; (6) NO; (7) CO, \times 1/20; (8) CO₂; (9) N₂O.

the effluent. The data for other catalysts are expressed similarly in the other figures.

The solid lines in Figs. 2 and 3 give the conversion over the catalyst at ascending temperature after pretreating the catalyst in situ in mixture W or in pure hydrogen for various lengths of time (Catalysts IA, IB and IC, Table 1). The results of the three pretreatments are virtually identical for the NO conversion (production of N_2 , N_2O and NH_3 ; top two panels in Fig. 2) and for the watergas shift reaction (production of H₂ and concomitant conversion of CO, lower panel of Fig. 2). The CH₄ production however decreases continuously as the catalyst is subjected to the reducing pretreatments (Fig. 3). These results indicate that the RDN-Ru state cannot be reached here.

The striking feature in the product pattern is the presence of two peaks in the NH₃ yield, one spanning $T < 300^{\circ}$ C and the other $300^{\circ}C < T < 500^{\circ}C$. It is likely that the low-temperature NH₃ peak is due primarily to a CO-assisted route to NH₃, perhaps the isocyanate route. This is in accordance with the strong promotion of NH₃ formation by CO in this temperature range found for Ru/Al_2O_3 (3) and for $Ru/SrRuO_3$ (5). It is also in accordance with the elimination of the NCO-ir band (13) and the selective elimination of the low temperature NH_3 formation (20) on Ru/γ -Al₂O₃ by treatment with SO₂. In the NO-CO-H₂O system, a peak in NH₃ production at 200-300°C and rapid decline thereafter has also been observed (14). The second, high temperature NH_3 peak may be assumed to be due primarily to a H₂-assisted mechanism in which CO is not involved. This is in accordance with the positive effect of H_2 on the NH₃ formation on Ru/Al_2O_3 above 350°C (3) and with the absence of an effect of the CO concentration on NH₃ formation over Ru/SrRuO₃ above 350°C (5).

Up to 270°C, the selectivity of the NO $S = (2N_2 + 2N_2O)/(2N_2 +$ conversion $2N_2O + NH_3$) is nearly constant, possibly as a result of a competition between N_2 formation through Eq. (6) followed by N_2O decomposition, and NH_3 formation through Eqs. (8) and (9). This would be reasonable in view of the similar molecular adsorption of CO and NO on Ru and of the limited role of H₂ in the reduction process up to that temperature (Fig. 2). The precipitous decrease of the NH₃ yield at 270°C cannot be due to changes in the NO or CO adsorption but may be the result of the start of the reaction of Eq. (5) of NH_{2ads} with NO (17) or of the surface diffusion of N_{ads} leading to Eq. (4).

The present reduced bulk Ru catalyst is active in the watergas shift reaction (see lower panel of Fig. 2), and does not produce NH₃ beyond 500°C. Both facts are in contrast with the behavior of the RDN states of Ru/SiO₂-Al₂O₃ (3) and Ru/ γ -Al₂O₃ (see below). The occurrence of the

FIG. 2. Conversion of NO-CO-H₂-H₂O-CO₂-He (mixture W) over bulk ruthenium. (--) Received catalyst (CAT I); (--) CAT IA ($\mathbf{0}$), CAT IB (\bigcirc) and CAT IC ($\mathbf{0}$). GHSV 33,000 hr⁻¹.

FIG. 3. Conversion of mixture W over bulk ruthenium. CH₄ production. See caption Fig. 2 for symbols. GHSV 33,000 hr⁻¹.

shift has only a negligible effect on the NH_3 formation.

The as-received bulk Ru, with a presumably oxidized surface, shows less activity for NO conversion (broken curves in Fig. 2). This is especially true at the lower temperatures, where CO is the main reducing agent. The CO-assisted NH₃ formation is diminished. These two effects are explained by the lower adsorption strength of CO and NO on oxidized Ru. The H₂ production is lower for the as-received Ru beyond 350°C, and H₂ might be consumed in the reduction of the surface oxide. The CH₄ formation on the oxidized surface is five fold higher than on the reduced surface (Fig. 3).

Ruthenium on
$$\gamma$$
-Al₂O₃,
 $d > 500 \text{ Å}$

In a series of experiments on finely dispersed Ru/γ -Al₂O₃, we were initially unable to reproduce the "dual state" behavior of Ru reported by the G.M. workers (1,3,7). However, after many repeated oxidation and reduction treatments including use of the catalyst in mixture W at 600°C for many hours, the dual state behavior started to develop. The eventually resulting catalyst, which in X-ray showed a very well developed Ru diffraction pattern characteristic of particles larger than 500 Å (21) has catalytic properties as given in Fig. 4 (CAT IVC). The full lines give the reduced state (RDN-Ru), reached by treating in mixture W at 600°C for more than 16 hr after *in situ* reduction in H₂ for 3 hr at 500°C. In accordance with the earlier reports, the reduced catalyst is producing appreciable amounts of NH₃ at 500 and 530°C; and is fairly inactive in the H₂ formation. The reduced state does not promote the hydrogenation of CO to CH₄.

Following treatment of the RDN-Ru catalyst at 540°C for 10 min with an excess of O_2 (1.7%) added to mixture W, the catalyst (CAT IVD) was in a state similar to the oxidized state (ODN-Ru) reported before (1). The conversion of mixture W was measured at descending catalyst tem-

FIG. 4. Dual nature behavior of Ru/γ -Al₂O₃, (-) Reduced state (CAT IVC), (--) oxidized state (CAT IVD). GHSV 18,000 hr⁻¹.

perature (broken lines in Fig. 4). The watergas shift activity has increased very substantially and the NH_3 production is nil at 500°C and above.

Ruthenium on γ -Al₂O₃, d < 100 Å

 Ru/γ -AlOOH (Cat II) and Ru/γ -Al₂O₃ (Cat IV), which were preheated in H_2 for 8 hr at 300°C and for an additional 4 hr at 600°C, respectively, were exposed to air in the course of transfer and storage. The catalytic profile of CAT II in the first run at ascending temperature is given in Fig. 5 (broken lines). The profile for CAT IV (not shown) is closely similar in all respects, notwithstanding the differences in support structure. Comparison with the as-received bulk Ru catalyst (broken lines in Fig. 2) shows that all these catalysts which have been exposed to air have very similar characteristics, witness the total NO conversion, the NH₃ formation and the watergas shift reaction. In comparison with the bulk Ru, the present supported catalysts differ only in the absence of the NH_3 minimum at 300°C and the initially much lower CH_4 formation.

A short period (< 90 min) of heating these catalysts in the flowing mixture W at 18,000 hr⁻¹ space velocity and 520°C produces a reproducible state characterized by the solid curves in Fig. 5. Two different runs are shown, measured on catalysts IIIA and IIIB at descending temperatures. In between, the sample was heated in mixture W at 627°C for 11 hr. Another sample, pretreated in situ in mixture W at 620°C for 15 hr (CAT IVA) showed a virtually identical profile (not given). The N₂O yields are very similar to that shown in Fig. 4. Compared to similarly treated bulk Ru, the present catalysts differ mainly by the substantially higher low-temperature peak in the NH_3 yield. This is the peak which was ascribed to CO-assisted NH₃ formation. It may be significant in this respect that highly dispersed Ru catalysts chemisorb up to two or three CO molecules per surface Ru atom, whereas bulk Ru adsorbs only one CO (9,12).

On these finely dispersed Ru catalysts,

FIG. 5. Conversion of mixture W, over Ru/alumina. (--) Ru/ γ -AlOOH, Cat II (\bigcirc); (-) Ru/ γ -Al₂O₃, CAT IIIA (\bigcirc) and CAT IIIB (\bigcirc). GHSV 18,000 hr⁻¹.

the watergas shift reaction starts at 250° C. Its start correlates with a drop in the NH₃ yield. This substantiates earlier observations (5,14) that in the temperature range where NH₃ formation is assisted by CO, conversion of CO by the shift reaction decreases the NH₃ yield.

Treatments of the catalyst for periods of up to several days in mixture W at temperatures up to 630°C are expected to yield the RDN-Ru (3), in particular in view of the fact that the same catalyst after repeated oxidation and reduction under similar conditions eventually does show the dual state behavior. However, the present reduced state shows little NH₃ formation at 500°C and active H₂ formation from the shift reaction at $T \ge 250$ °C, unlike the RDN-Ru (Fig. 4 and Refs. (1,3).

An effort was made to contribute to the knowledge of the mechanism of the conversion of NO on this reduced state by studying the yields of the conversion products as a function of space velocity. A fresh sample of Ru/γ -Al₂O₃ (CAT IV) was

treated with mixture W at 620°C for 15 hr (CAT IVA). It then showed a catalytic profile (yields of NH_3 and H_2) which was virtually identical to that shown by the solid curves in Fig. 5. The CH₄ yield corresponded to that of the higher CH₄ curve in Fig. 5. The N_2 and N_2O yields were similar to those in Fig. 4 and have been reported earlier [Ref. (5), Fig. 1]. The space velocity effects in Fig. 6 are for 212°C (solid curves) and 401°C (broken curves). These temperatures correspond approximately with the maxima of the first NH_3 peak and the N_2O peak for $212^{\circ}C$ and of the second NH_3 peak and the CH_4 peak for 401°C.

At 212°C the N₂O/N₂ ratio is markedly dependent on the space velocity, increasing by a factor 2.5 for an increase of GHSV from 4000 to 38,000 hr⁻¹. This is in line with the proposed intermediacy of N₂O in part of the N₂ formation. At the same time, the NH₃ yield drops from 80 to 60%, which might indicate that reaction of N_{ads} with NO_{ads} is somewhat faster than

FIG. 6. Effect of space velocity on the conversion of mixture W over Ru/γ -Al₂O₃ (CAT IVA). (-) 212°C, (--) 401°C.

the reaction of N_{ads} with CO_{ads} and hydrolysis to NH₃. At any rate, a gas-phase NH₃ intermediate is unlikely. The last conclusion holds also for 401°C, where the variations of the NH_3 and N_2 yields are insignificant. A similar conclusion was reached for the RDN-Ru/SiO₂-Al₂O₃ (3). The CH₄ content strongly decreases with increasing space velocity at 401°C. However, the CH₄ yield (mole/hr) calculated from the product of the space velocity and the CH_4 content of the effluent actually increases by a factor 2 between GHSV 4000 and 38,000 hr^{-1} . Since the partial pressures of H_2 and CO are not changing sufficiently to account for this even if, for the sake of argument, the rate is supposed to vary with $p_{\rm CO} \times p_{\rm H_2}^3$, it must be assumed that another constituent, perhaps NO, plays a role in the CH_4 formation.

Development of the Dual State Nature of $Ru/\gamma-Al_2O_3$

Fresh Ru/γ -Al₂O₃ catalysts after air exposure are easily reduced to a reduced state which is active in the watergas shift reaction and which does not promote NH₃ formation at 500°C and above. The reduced state of the fresh catalyst is thus very different from the more extensively used RDN-Ru catalysts and in fact resembles more closely the reduced state of bulk Ru. It is therefore of interest to report in some detail the development of the dual nature behavior. The relevant series of experiments is shown in Fig. 7. A fresh sample of CAT IV, which had been prereduced in H₂ at 600°C, exposed to air and reduced in mixture W at ascending temperature up to 530°C showed behavior closely similar to the fresh reduced state in Fig. 5, as shown in Fig. 7 (Run No. 2, broken curves). After a few days' use in mixture W at varying space velocities at temperatures up to 540°C, the NH_3 yield had changed somewhat (Fig. 7, Run No. 5) but the NH₃ yield at 500°C was still very

low and the activity in the watergas shift reaction (H₂ formation) has not changed. Subsequent oxidation at 540°C for 10 min in pure O_2 at 50 cm³/min and flushing with pure He for 30 min at 540°C yielded the activity profile of Run No. 6, measured at descending temperature. Subsequently, the oxidation treatment was repeated in mixture W to which 1.7% O₂ was added (10) min at 540°C) and the activity was measured at descending temperatures (Run No. 7). It is quite clear that oxygen treatment has not affected the NH₃ yield at all, while the watergas shift activity is somewhat decreased and the CH₄ formation is almost eliminated.

At this point, when efforts to produce the dual state behavior by oxidation or reduction consistently led to behavior associated with the ODN-Ru catalysts described earlier (1), the catalyst was reduced in a flow of 100 cm³/min of pure dry H₂ at 500°C for 3 hr, cooled in H₂ and kept in the H₂ flow at 25°C for 48 hr (CAT IVB). Subsequently, Run Nos. 8 and 9 (Fig. 7) were measured at ascending temperatures. The watergas shift activity had decreased significantly, as expected on the basis of the earlier reports, but the NH₃ formation has diminished instead of increased, with NH₃ yield at 500°C practically nil, again behavior which is associated with the ODN-Ru catalysts described earlier. The profile in Fig. 7 is stable at the temperatures $(<520^{\circ}C)$ reached in Run Nos. 8 and 9. It is only after heating for 16 hr at 600°C in mixture W (CAT IVC) that the NH_3 yield finally increased, especially in the range of 400-550°C. There was no increase in the overall NO conversion activity. In this way, the pattern of the RDN-Ru catalyst developed as shown in Fig. 4 (solid curves). This was easily converted into the ODN-Ru catalyst by treatment for 10 min at 540°C with mixture W to which 1.7% O_2 had been added (CAT IVD, Fig. 4, broken curves).

FIG. 7. Development of the dual nature of $Ru/\gamma-Al_2O_3$. Conversion of mixture W. GHSV 18,000 hr⁻¹. (\bigcirc) CAT IV, run No. 2; (\bigcirc) CAT IV, run No. 5; (\square) CAT IV, run No. 6; (\blacksquare) CAT IV, run No. 7; (\triangle) CAT IVB, run No. 8; (\blacktriangle) CAT IVB, run No. 9; see text.

Proposed Explanation of the Dual Nature Effect

The explanation of the dual nature effect has been sought in redispersion effects brought about by the oxygen treatment (7). Some redispersion is indeed indicated by the increase in overall NO activity resulting from the oxygen treatment (Fig. 4). However, there is no correlation between the particle size of the Ru and the observation of the ODN-Ru behavior. The latter is exhibited by bulk Ru (Fig. 1), and by $Ru/\gamma Al_2O_3$ with particles of at least 500 Å as in Fig. 4 (this size determination was done for the oxygen treated catalyst), but is also shown by Ru/γ -Al₂O₃ with particles of 100-500 Å (Fig. 7) or with particles of <100 Å (Fig. 5).

On the other hand, the RDN-Ru behavior cannot be reached even by *in situ* reduction of bulk Ru in pure H_2 followed by treatment in mixture W for 17 hr at 620°C, and is only reached with difficulty on a Ru/γ -Al₂O₃ catalyst by H₂-reduction in situ at 500°C if followed by protracted use in mixture W above 520°C.

It is proposed that the deciding feature of the RDN-Ru catalysts is surface contamination by a nitrogen-containing layer, possibly a Ru-nitride layer (22). It must be assumed that formation of this layer is inhibited when the surface contains oxygen and only forms relatively slowly in mixture W at high temperatures where the surface is depleted of oxygen and NH₃ is not sufficiently stable to carry the N off the surface at the low H₂ partial pressure used. The stability of bulk Ru against the formation of the RDN (i.e., nitrogenated) state may be due to diffusion of oxygen from the bulk to the surface or to the difficulty for N atoms to penetrate the surface (23). The deciding disadvantage of the reduced state, its promotion of NH₃ formation at 500°C and higher, would be readily understood from the low activity of metal nitrides for NH₃ decomposition (24). Oxygen treatment is assumed to remove the nitrogen from the surface as NO or NO₂. The oxidation of Ru nitride should occur readily at 500°C. The greater difficulty experienced by us in obtaining the RDN-Ru state as compared with earlier workers (1,3) may be due to the fact that we used a He diluent rather than N₂. N₂ is adsorbed on finely dispersed Ru after reducing pretreatments (22,25,26) and could possibly serve as an additional source of N atoms for nitriding the surface. It is significant that N₂ is a stable ligand on Ru complexes (27).

If the explanation of the RDN behavior as being due to nitrogen covering the surface is correct, it may be expected that incorporation of K or K_2O impurities in the catalyst plays a role, since promotion of Ru catalysts with alkali leads to enhanced establishment of equilibrium of the $N_2-H_2-NH_3$ system (16,28) and enhances the adsorption of nitrogen on Ru (29). In bulk Ru, these impurities are not present, but they may be derived from the Al₂O₃ in the supported samples.

The reduced state produced by treatment of Ru catalysts with SO_2 (3,20) is similarly promoting NH₃ formation in mixture W at $T \ge 500^{\circ}$ C. However, this sulfided reduced state is different from the nitrided reduced state in that the former eliminates the CO-assisted NH₃ formation as well as the NCO⁻ ir band, whereas the nitrided state still shows high activity for NH₃ formation at low temperature.

Effect of Ru Particle Size on NH₃ Yield

It may be noted that the low-temperature NH₃ maximum for all these catalysts showing the oxidized state is correlated with the particle size, increasing from 50% (bulk Ru) to 65% (\geq 500 Å), to 79% (100-500 Å), to 82% (<100 Å). This is as expected for the CO-assisted NH₃ formation since the number of CO molecules adsorbed per Ru surface atom increases with decreasing particle size (9,12).

CONCLUSIONS

The formation of NH₃ in the conversion of NO-CO-H₂-H₂O-CO₂-He over Ruthenium catalysts proceeds mainly through a CO-assisted mechanism at low temperature ($T < 300^{\circ}$ C), and mainly through a H₂-assisted mechanism not involving CO

Name	Surface ^a	50% NO converted ^b at <i>T</i> (°C)	NH_3 yield ^b (% of NO inlet)			Shift reaction	Stable ^b in mix W up to T
			175–275°C	275-450°C	>450°C	at T (°C)	(°C)
α	Reduced, H ₂ at 600°C	215	30-40	~20	<10	460	≥500
β	Oxidized, ex- posed to air	245	≲30	~40	<10	350	<400
γ	Some oxygen coverage ^c	175	60-80	~40	<10	300-350	>630
δ	Nitrogen covered ^c	200	~50	~30	~25	>530	>530
e	SO_2 treated ^{cd}	260	≲30	~40	~30	>530	—

 TABLE 2

 Characteristic States of Ruthenium/Alumina Catalysts

^a See text.

^b Under test conditions: mixture W, GHSV 18,000 hr⁻¹.

^e RDN-Ru is in the δ or ϵ states, ODN-Ru is in the γ -state.

^d Ref. (20).

The dual nature of ruthenium catalysts develops through the interaction of small, well-reduced ruthenium particles ($d \leq 500$ Å) with the NO-CO- H_2 - H_2O -CO₂-He mixture. It is suggested that nitrogen incorporated in the ruthenium surface is responsible for the high NH₃ production and low NH₃ decomposition activity at $T \ge 500^{\circ}$ C associated with the "reduced state" of dual nature catalysts. The presence of oxygen in the surface passivates it for nitrogen incorporation and under oxidizing conditions the surface nitrogen is removed, restoring the "oxygen treated" state of the catalyst. Catalysts which are thoroughly reduced in situ in hydrogen show very low NH₃ formation, but this condition is not stable. An overview of the properties of the various "states" of Ru is given in Table 2.

ACKNOWLEDGMENTS

We are grateful to D. W. Johnson, Jr., for providing the Ru/ γ -AlOOH and Ru/ γ -Al₂O₃ Catalysts I and II, to F. Schrey for surface area determinations, to Mrs. A. S. Cooper for X-ray diffraction data and to J. P. Remeika for continuing discussions.

REFERENCES

- 1. Klimisch, R. L., and Taylor, K. C., *Environ. Sci. Technol.* 7, 127 (1973).
- 2. Shelef, M., and Gandhi, H. S., *Ind. Eng. Prod. Res. Develop.* 11, 393 (1972).
- Taylor, K. C., and Klimisch, R. L., J. Catal. 30, 478 (1973).
- Mai, G., Siepmann, R., and Kummer, F., Ger. Pat. Appl. 2 151 958, Apr. 26, 1973.
- Voorhoeve, R. J. H., Remeika, J. P., and Trimble, L. E., *Mater. Res. Bull.* 9, 1393 (1974).

- 6. Shelef, M., and Gandhi, H. S., *Platinum Metals Rev.* **18**, 2 (1974).
- Taylor, K. C., Sinkevitch, R. M., and Klimisch, R. L., Pap. 46, N. Amer. Meet. Catal. Soc., 3rd (San Francisco) 1974.
- 8. McKee, D. W., J. Catal. 8, 240 (1967).
- Kobayashi, M., and Shirasaki, T., J. Catal. 28, 289 (1973).
- 10. Low, M. J. D., J. Phys. Chem. 65, 887 (1961).
- Shelef, M., and Kummer, J. T., Chem. Eng. Progr. 67, 74 (1971).
- 12. Dalla Betta, R. A., Pap. 49, N. Amer. Meet. Catal. Soc., 3rd (San Francisco) 1974.
- 13. Unland, M. L., J. Catal. 31, 459 (1973).
- 14. Shelef, M., and Gandhi, H. S., Ind. Eng. Chem. Prod. Res. Develop. 13, 80 (1974).
- Low, M. J. D., and Taylor, H. A., Can. J. Chem. 37, 544 (1959).
- Urabe, K., Aika, K.-I., and Ozaki, A., J. Catal. 32, 108 (1974).
- Otto, K., and Shelef, M., Z. Phys. Chem. (Frankfurt am Main) 85, 308 (1973).
- Low, M. J. D., and Taylor, H. A., J. Electrochem. Soc. 106, 138 (1955).
- Voorhoeve, R. J. H., Trimble, L. E., and Khattak, C. P., *Mater. Res. Bull.* 9, 655 (1974).
- 20. Trimble, L. E., Mater. Res. Bull. 9, 1404 (1974).
- Klug, H. P., and Alexander, L. E., "X-Ray Diffraction Procedures," p. 491. Wiley, New York, 1967.
- Guyer, A., Guyer, P., Schneider, F., and Marfurt, H. R., *Helv. Chem. Acta* 38, 798 (1955).
- Yatsimirskii, V. K., and Tovbin, M. V., Ukr. Khim. Zh. 33, 119 (1967); Chem. Abstr. 67, 15209 g (1967).
- Thomas, J. M., and Thomas, W. J., "Introduction to the Principles of Heterogeneous Catalysis," p. 409. Academic Press, London, 1967.
- Thein, A., thesis, New York Univ., New York, 1967.
- Lyutov, V. S., and Borod'ko, Y. G., Kinet. Katal. 12, 1566 (1971).
- Quinby, M. S., and Feltham, R. D., *Inorg. Chem.* 11, 2468 (1972).
- Ozaki, A., Aika, K., and Morikawa, Y., Proc. Int. Congr. Catal., 5th, 1972 2, 1251 (1973).
- Ozaki, A., presented: Symp. Catalytic Chem. of Nitrogen Oxides, General Motors Research Laboratory, Oct. 6-8, 1974.